
Philippe Larédo & Antoine Schoen
OECD meeting, March 12th, 2018
Objectives & methodology

- A semantic analysis of the ‘products’ of the TIP working group
- 330 TIP documents (reports, workshops and mandates – TIP as a whole and TIP specific activities).
- Mobilising the digital platform CORTEXT (www.cortext.net)
- Based on an indexation of the 400 central ‘multi-terms’ (not innovation but innovation systems) – on average 23 per document dealing with policy areas, processes & rationales
- Two levels of analysis:
 - the vocabulary & its demography over 21 years → drives to identify 22 ‘themes’: 13 policy areas, 2 policy processes and 7 policy rationales & objectives
 - the links between multi-terms → 6 overall clusters, that act as ‘second-order’ policy mixes, and evolve over time (3 periods considered: 1994-2000; 2001-2008; 2009-2014*).

* 1993 has only 1 document, and the DB is incomplete in 2015-16 (6 documents overall)
Themes: A focus on the 13 policy areas

<table>
<thead>
<tr>
<th>POLICY AREAS</th>
<th>terms</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public research</td>
<td>33</td>
<td>25%</td>
<td>25%</td>
<td>18%</td>
<td>23%</td>
</tr>
<tr>
<td>Knowledge transfer & commercialisation</td>
<td>23</td>
<td>12%</td>
<td>9%</td>
<td>9%</td>
<td>10%</td>
</tr>
<tr>
<td>Open science</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>3%</td>
</tr>
<tr>
<td>Human resources</td>
<td>11</td>
<td>10%</td>
<td>3%</td>
<td>2%</td>
<td>5%</td>
</tr>
<tr>
<td>New and/or specific technologies</td>
<td>12</td>
<td>18%</td>
<td>6%</td>
<td>3%</td>
<td>9%</td>
</tr>
<tr>
<td>Services</td>
<td>9</td>
<td>3%</td>
<td>8%</td>
<td>1%</td>
<td>4%</td>
</tr>
<tr>
<td>Intellectual property</td>
<td>11</td>
<td>8%</td>
<td>16%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>Tax incentives</td>
<td>9</td>
<td>5%</td>
<td>7%</td>
<td>1%</td>
<td>4%</td>
</tr>
<tr>
<td>Smart specialisation</td>
<td>4</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>3%</td>
</tr>
<tr>
<td>Public private partnerships</td>
<td>7</td>
<td>2%</td>
<td>11%</td>
<td>17%</td>
<td>9%</td>
</tr>
<tr>
<td>Environment and green development</td>
<td>18</td>
<td>11%</td>
<td>5%</td>
<td>9%</td>
<td>9%</td>
</tr>
<tr>
<td>Global challenges</td>
<td>6</td>
<td>0%</td>
<td>3%</td>
<td>10%</td>
<td>4%</td>
</tr>
<tr>
<td>Other policy areas</td>
<td>13</td>
<td>4%</td>
<td>7%</td>
<td>5%</td>
<td>5%</td>
</tr>
<tr>
<td>Total</td>
<td>160</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Number of terms per area

Occurrences of terms per area over the period
P1=1994-2000; P2=2001-08; P3=2009-14

Two major results:

1) Unequal importance of themes: 5 themes represent 2/3rds of occurrences
2) only 4 areas are equally present over the period, 7 peak in only one period, 2 are nearly absent from one period
An overall views of links: 6 clusters highlighting ‘sub’ policy mixes & their privileged years
Clusters: policy rationales & processes

NSI / market & system failures / Foresight

Governance arrangements

Business R&D / globalisation / Open innovation

SME & tech-based firms

Transformations of innovation processes (open innovation & business models)

Priority setting Impact assessment
A focus on environmental issues using ‘heat maps’

Environment & New technology

Smart specialisation

Green Growth, Global challenges

Policy instruments

Innovation in services

Green technology and innovation

Policy frameworks

Green growth

Policy measures, sector systems innovation

Policy development

Innovation performance

Knowledge and demand-side policies

Innovation systems

Innovation capacities governance arrangements

Value and knowledge-intensive services

Global value chains

Innovative firms

Software industry

Knowledge flows

Innovation process

Job creation

Framework conditions

Global challenges

Globalisation of research, technology based firms

Business sectors

Government sector

Knowledge and technology

Public research organisations and research

Human resources

Small and medium sized firms, networks, clusters

Innovation and growth

Technology incubators

Information technology

Innovation market

Science and technology personnel

Industry-society relationships

Basic research
Conclusions

• On the content:
 - A synthetic approach of TIP core policy preoccupations – with an understanding of evolutions over time
 - Possibilities to analyse in detail both each theme and each ‘sub’ policy mix

• On Methodologies:
 - A quite flexible approach accessible on line with multiple graphical possibilities
 - Sensitive to the selection of documents analysed and of summaries made
 (here 330 documents, a very small DB, on the lower side of analytical robustness)
Findings 1

• We get out of this exercise with the feeling that there is not such a thing of one R&I policy mix. We have identified 5 different sub-policy mixes that have their own rationales (poorly shared between sub policy mixes), even though they may share some instruments.
Findings 2

• Whatever the period (and we have identified 3 in the last 25 years), the composition & role of public sector research has been prevalent, reminding very much of the early times of OECD (e.g. Pignaniol report) : managing well public expenditure in public research is the most important ‘sub’ policy mix.
Findings 3

• All the procedural instruments (tax credits, PPP, demand side policies, etc) have all been central in one period, but seldom more, as if enough had been discussed about what they were, what they could do and could not do.
Findings 4

• At the same time there has been very limited discussions about sectoral R&I policies, even IT has been a limited and passing focus. The only very visible (building one sub policy mix) and lasting exception is about the ‘environment’, turning into green policies in the last period.