Modelling and Mapping the Dynamics and Transfer of Knowledge. A Co-Creation Indicators Factory Design

Cinzia Daraio (E-mail:daraio@dis.uniroma1.it)
DIAG Dipartimento di Ingegneria Informatica, Automatica e Gestionale Antonio Ruberti

Workshop: Semantic Analysis for Innovation Policy
Paris, OECD, 13 March 2018
The set up

• This project is a development of the KIMAR project (Establishing a Knowledge Infrastructure for the Development of Methodologies for the Assessment of Research and its Impacts) on which it is based.

• It has the ambition to create new kinds of multi-dimensional indicators correcting some of the problems related to excessive reliance on one-dimensional criteria, as is often the case, e.g. for rankings. The expected results include a better identification of knowledge-production (and co-creation) and knowledge transfer activities.

• A relevant theme for evidence-based Innovation Policy.
Acknowledgment

• The **KIMAR project** (*Establishing a Knowledge Infrastructure for the Development of Methodologies for the Assessment of Research and its Impacts*)

• is supported by **Clarivate Analytics thorugh the KOL Project (2017-2020).**
Objectives

Objective: development of an innovative indicator factory design to develop timely and accurate multidimensional indicators of knowledge co-production, co-creation and transfer.

It requires the development of a conceptual and empirical framework for the generation of robust models of indicators of knowledge co-production, co-evolution, and transfer over time.

The specific objectives of the project are:

i) the design of a general Co-Creation Indicators Factory (all the actors involved in the interaction between knowledge and society)

ii) the integration and consolidation of large and heterogeneous sets of micro-level data with meso and macrodata;

iii) the development of a sound visual analytic approach

iv) the development of new methodologies to estimate 'socially robust' impact indicators;

v) propose a use case on Regional Smart Specialization.
State of the Art

• The exponential increase in the availability of data and the impressive developments of tools for data mining and intelligence create huge opportunities to deliver the promise of the information society.

• Citizens are much more and better informed than before, due to the data revolution, and share their experiences in digital communities.

• They increasingly ask to be involved in decisions.

• Innovation becomes a joint product between research, digitalisation, and social creativity.

• This trend creates a challenge to the old model of Science Technology and Innovation (STI) indicator construction and use.
State of the Art

• The three main actors of the Triple helix (government, academia and industry) shared a similar approach to indicators and to their use in decision making.

• The fourth actor in the helix follows a somewhat different logic. Citizens mobilize around specific issues. These issues often cut across traditional boundaries: they call for multidisciplinary knowledge, involve public-private interaction, need radically new business models and/or public governance models.

• The established factory that produces STI indicators is not adequate here. The required indicators are often new, must be created ex-novo in order to illuminate complex issues.

• They cut across existing domains of indicator production.

• They must be designed and produced interactively.
Co-Creation Indicators Factory based on a pool of interdisciplinary competences:

- Science, Technology and Innovation Systems
- Higher Education Systems
- Statistical tools from Physics of complex systems
- Econometrics
- Visual Analytics
- Information and Data Science

Convergence as the "coming together of the insights and approaches from originally distinct fields (National Research Council, 2014)"... power of thinking beyond usual paradigms.
Need for a framework for modelling

Source: Daraio (2017a).
The implementation problem

Panel A

Context of intervention systems

Problem content

Intellectual resources

Intervention

analysed at

LoA (O-committing)

attributed to

Properties

identifies

Model (O-committed)

Panel B

LOCAL

Context of intervention systems

analysed at

LoA (O-committing)

attributed to

Abstraction

GLOBAL

attributed to

Properties

identifies

Model (O-committed)

Source: Daraio (2017b).
The use case: A Conditional Efficiency and Visual Analytics Approach to Regional Smart Specialization

Conditional efficiency models are useful to compare the multidimensional innovative performance of regions. They allow to disentangle the impact of regional policy measures into impact on the competitive performance of the regions (impact on the frontier of the best practice) and impact on the catching up (impact on the distribution of the efficiency scores) of less performing regions.

This work proposes to use this approach to model the regional smart specialization, allowing the exploration of its results and underlying data through Visual Analytics, “the science of analytical reasoning facilitated by interactive visual interfaces”.

This combination offers the opportunity to develop an open platform to analyze regional smart specialization, improving situational awareness, allowing simulation-based what-if scenarios to predict future evolution and/or validate policy alternatives.

Our proposal is useful for policy-makers for the assessment of the policy of cohesion at territorial level (balancing competition with cooperation), scholars interested in regional development, cohesion policy, efficiency analysis and general public (transparency).

- Work in progress: it will be presented at ASTON DEA Conference, Birmingham April 2018 and NAPW 2018 Miami, June 2018.
Conclusions

• **Semantic Analysis for Innovation Policy** requires the development of models
• **Models** are required to assess the **robustness** of the choice done
• A **framework** is necessary to develop models (identify what *is included* and what is *excluded*)
• Modelling is crucial but a **delicate art**!
• An **iterative Top-down - Bottom up** modelling approach (from the general to the specific and back!) may be an interesting solution to explore.
• The use case on **Regional Smart Specialization** can provide an example!
Selected references

Daraio C. (2018), Econometric approaches to the measurement of research productivity, in *Springer Handbook of Science and Technology Indicators* edited by Glänzel W., Moed H.F., Schmoch H. and Thelwall M., forthcoming.

Daraio C., Bonaccorsi A., (2017), Beyond university rankings? Generating new indicators on universities by linking data in open platforms, *Journal of the Association for Information Science and Technology*.

