Israel

Please cite this chapter as:

http://dx.doi.org/10.1787/sti_outlook-2008-37-en
This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area.
ISRAEL

Israel stands out on a number of innovation indicators. At 4.65% of GDP it has the world’s highest R&D intensity, over twice the OECD average of 2.26%. The intensity of business R&D expenditure is also higher than in all OECD countries, at 3.64% of GDP in 2006. Israel has the fifth highest number of scientific articles per million population, after Switzerland, Sweden, Denmark and Finland. It is also among the leaders in the number of triadic patent families per capita; however, in absolute terms it accounts for less than 1% of all triadic patent families, on a par with Australia and Belgium. In addition, Israel has a strong information and communication technology sector which accounts for about 20% of total industrial output, 9% of business sector employment, and a large share of the output growth of Israeli industry.

Israel’s innovation system is a key driver of economic growth and competitiveness. While the success of the Israeli system is primarily attributable to vibrant business sector innovation and a strong entrepreneurial culture, the government has also played an instrumental role in financing innovation, especially in SMEs, and in providing well-functioning framework conditions for innovation, including venture capital (VC), incubators, strong science-industry links, and quality university education. For example, Israel reportedly has around 70 active VC funds, which raised EUR 963 million in 2005 and EUR 437 million in 2006. It has 24 technology incubators, 16 of which are privately owned.

The available indicators on human resources for S&T show no shortages. The tertiary education attainment ratio is the third highest worldwide, behind only Russia and Canada, and the share of graduates in science and engineering, at 24.3%, is at a level commonly observed in advanced OECD countries.

Yet, Israel also faces some challenges. The strong reliance on the high-technology sector provides a narrow base for economic growth. Promoting innovation by SMEs and in non-high-technology industrial and services sectors is particularly important.

Maintaining efficiency in R&D expenditure is another challenge. With high R&D intensity, it is important to ensure that project selection remains rigorous, with a focus on net economic benefits. The Office of the Chief Scientist, the main government agency to support R&D (with a budget of EUR 223 million in 2006 and EUR 219 million in 2007), has funded one out of five project proposals in recent years. A further challenge is how to identify and invest in future technologies, including biotechnology and nanotechnology, that have strong potential.

Recent government initiatives include the amendment in 2005 of the law on R&D to allow overseas transfers of know-how resulting from publicly funded research, the establishment of several new programmes for SMEs and traditional industries, as well as the creation of a EUR 21 million fund for nanotechnology and a EUR 25 million fund for biotechnology. A new programme for the development and commercialisation of water technologies was introduced, and additional instruments for the water and renewable energy fields are being developed. Israel has also signed R&D co-operation agreements with innovative regions in foreign countries and major multinational companies; these will help it to build stronger links with innovation partners.
Science and innovation profile of Israel

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Israel</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>% population aged 25-64 with tertiary degree</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science and Engineering degrees as % of all new degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of GERD financed by abroad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GERD as % of GDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERD as % of GDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triadic patents per million population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific articles per million population</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patents with foreign co-inventors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R&D intensity, 1991-2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As a percentage of GDP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venture capital, 2003 and 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>As a percentage of GDP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

StatLink: http://dx.doi.org/10.1787/45461246813

StatLink: http://dx.doi.org/10.1787/45461176731
This chapter complements Chapters 1 and 2 by providing an individual profile of the science and innovation performance of each OECD country, as well as observers to the OECD Committee on Science and Technology Policy (Brazil, Chile, China, Israel, Russia and South Africa), in relation to their national context and current policy issues. The graphs enable countries to see some of their relative strengths and weaknesses as compared to other countries’ performance.

The common indicators in the first (radar) graphs were selected on the basis of current policy issues. They focus on research and innovation inputs, scientific and innovation outputs, linkages and networks, including international linkages, and human resources. A standard set of indicators is used; however, when data are not available, alternative indicators may be applied. The annex provides a full list and description of the indicators, methodological notes and data sources.

For each indicator in the radar graph, the country with the maximum value is set at 100, taking into account all OECD and non-OECD countries with available data. The average is calculated by taking into account all OECD countries with available data (non-OECD countries are excluded from the average). The annex provides further details.

The radar graphs are accompanied by country-specific figures that further illustrate national characteristics and underpin policy-specific comments. The selection of comparator countries in these graphs aims to highlight the general position of the focal country and, in some instances, data on other countries may also be shown.
Table of Contents

Executive Summary 11

Chapter 1. Global Dynamics in Science, Technology and Innovation 17

 - Introduction 18
 - Drivers of economic growth 18
 - R&D dynamics: the changing landscape 20
 - Innovation in key technologies 33
 - Innovation performance varies across countries .. 37
 - Financing innovation 39
 - Patents and scientific publications surge 42
 - Demand for human resources accelerates 46
 - Summary 55
 - Notes 55
 - References 55

Chapter 2. Main Trends in Science, Technology and Innovation Policy 57

 - Introduction 58
 - National strategies for science, technology and innovation ... 60
 - Strengthening public research and public research organisations. ... 71
 - Support for business R&D and innovation 77
 - Enhancing collaboration and networking among innovators 87
 - Globalisation of research and innovation 90
 - Human resources for S&T 93
 - Evaluating innovation policies 99
 - Outlook: future challenges 101
 - Notes 102
 - References 102

Chapter 3. Science and Innovation: Country Notes 103

 - Australia 104
 - Austria 106
 - Belgium 108
 - Canada 110
 - Czech Republic 112
 - Denmark 114
 - Finland 116
 - France 118
 - Germany 120
 - Greece 122
| Chapter 4. Assessing the Socio-economic Impacts of Public R&D: Recent Practices and Perspectives | 189 |
| Introduction | 190 |
| Defining the impacts of R&D | 190 |
| Key challenges for assessing the socio-economic impacts of public R&D | 192 |
| Approaches to impact assessment of public research in OECD countries | 193 |
| Impact assessment of research councils and public research organisations | 200 |
| Impact assessment of research programmes | 207 |
| Non-economic impacts | 211 |
| Conclusions | 214 |
| Notes | 216 |
| References | 216 |

Chapter 5. Innovation in Firms: Findings from a Comparative Analysis of Innovation Survey Microdata	219
Introduction	220
Using microdata from innovation surveys	220
Innovation indicators	223
Technological and non technological innovation	235
Innovation and productivity ... 239
Innovation and IPR .. 246
Final remarks .. 253
Notes ... 254
References ... 255
Annex 5.A1. Tables ... 257

Boxes

1. Science performance and research intensity: PISA results 52
2.1. Recent research and innovation policy developments
at European Union level .. 75
2.2. Recent research and innovation policy developments in the United States 78
2.3. Recent research and innovation policy developments in China 79
2.4. The SME offensive in the Netherlands .. 86
2.5. Life-cycle support of human resources in S&T (HRST) in Korea 96
2.6. International mobility policies of the European Commission 98
2.7. Evaluation of the impact of S&T and innovation policies in Portugal 100
4.1. Eleven dimensions of the impacts of science 191
4.2. The main challenges for analysing the economic and non-economic impacts
of public R&D .. 193
4.3. Guellec and van Pottelsberge de la Potterie’s macroeconometric model. 195
4.4. Capitalisation of R&D: methodological issues 197
4.5. Linking GBAORD data to publication and patent data sets: the example
of human health. ... 201
4.6. The Monash model .. 204
4.7. Reductions in the direct costs of illness through NIH medical research 206
4.8. The role of the NIH in reducing disease .. 206
4.9. The NEMESIS model .. 208
4.10. The Business Reporting System Survey 210
4.11. Swedish traffic safety research .. 213
5.1. Defining innovation .. 225
5.2. The model in a nutshell ... 240
5.3. Some measurement hurdles .. 243
5.4. The model .. 252

Tables

1. Investment in intellectual assets in five OECD countries,
by asset category ... 40
2.1. Revised or new national plans for science, technology and innovation
policy in OECD countries and selected non-member economies 2008 64
2.2. Targets for R&D spending .. 72
2.3. Recent or proposed changes in R&D tax incentives in OECD and selected
non-member economies, 2008 ... 81
2.4. Recent or proposed changes in IPR-related policies in OECD and selected
non-member economies ... 88
2.5. Recent policy changes to promote inward R&D and innovation investments through foreign direct investment .. 92
2.6. Recent efforts to improve the development of human resources in science and technology (HRST) .. 95
3.A1.1. Radar graph indicators and values .. 179
3.A1.2. Radar graph country data notes .. 182
3.A1.3. Radar graph: country with maximum value 185
3.A1.4. Radar graph data sources and methodological notes 186
5.1. Which firms are more likely to be innovative? .. 242
5.2. Which firms spend more on innovation? .. 244
5.3. What is the impact of product innovation on labour productivity? 245
5.4. Product innovation and labour productivity: robustness checks 246
5.A1.1. Summary of findings from the factor analyses 257
5.A1.2. Impact of the different modes of innovation on productivity 258

Figures

1.1. The sources of real income differences, 2006 .. 19
1.2. Contribution to growth of GDP, G7 countries, 1985-2006 and 2001-06 20
1.3. R&D trends, 1996-2006 ... 21
1.4. GERD Intensity by country, 1996, 2001 and 2006 22
1.5. Business R&D spending by area, 1996-2006 .. 23
1.6. BERD intensity by country, 1996, 2001 and 2006 24
1.7. Business R&D intensity and share of R&D performed by firms with 500 or more employees, 2005 (or nearest year) .. 24
1.10. Change in government R&D budgets, 2002-07 (or latest available years) 27
1.11. Direct and indirect government funding of business R&D and tax incentives for R&D, 2005 (or latest available year) .. 28
1.12. R&D performed in higher education and government research institutes by area, 1996-2006 ... 29
1.14. Higher education research and development expenditure by field of study, 2005 ... 30
1.15. Share of higher education R&D financed by industry, 1996, 2001 and 2006 ... 31
1.16. R&D funds from abroad, 1996, 2001 and 2006 32
1.18. Total expenditure on biotechnology R&D by biotechnology-active firms, 2003 (or latest available year) .. 34
1.19. Nanotechnology patents as a percentage of national total (PCT filings), 2002-04 ... 35
1.20. Countries’ shares in environmental technology patents filed under the PCT, 2000-04 ... 36
1.21. Renewable energy patenting, by energy source, 1990-2005 36
TABLE OF CONTENTS

1.22. Share of turnover from new-to-market product innovations, by firm size, 2002-04 (or latest available years) ... 37
1.23. Non-technological innovators, 2002-04 (or latest available years) 38
1.24. Firms with foreign co-operation for innovation, 2002-04 (or latest available years) ... 39
1.25. Venture capital investment, 2006. ... 41
1.26. Share of high-technology sectors in total venture capital, 2005 (or latest available year) ... 42
1.27. Triadic patents, 2005 ... 43
1.28. Annual growth rates of patenting, 1997-2004 .. 44
1.29. Patents with foreign co-inventors, 2002-04 .. 45
1.30. Scientific articles, 2005 .. 45
1.32. Growth rate of HRST occupations and total employment, 2000-06 47
1.33. Growth of HRST employees by industry 1995-2004 (or latest available years) ... 48
1.34. R&D personnel, 2006 ... 48
1.35. Growth of R&D personnel, 1996-2006 ... 49
1.36. Women researchers by sector of employment, 2006. 50
1.37. Science and engineering degrees, 2005 .. 51
1.38. PhD graduates in science, engineering and other fields, 2005 53
1.39. Distribution of foreign students by country of destination, 2005 54
1.40. Distribution of international and foreign students by field of education, 2005 .. 54
2.1. Governance of S&T Policy in the Netherlands .. 68
2.2. Civilian GBAORD by main socio-economic objectives, selected OECD countries, 2007 ... 72
2.3. Tax treatment of R&D in OECD and non-member countries, 2008 83
2.4. Venture capital investment as a percentage of GDP, 2003 and 2006 84
4.1. Overall GBAORD by socio-economic objective, OECD countries, 2006 .. 199
4.2. Evolution of global GBAORD by socio-economic objective, 1995-2006 199
4.3. Relationship between “enhanced” health GBAORD data and main health-related publications, 2004. ... 201
4.4. Relationship between “enhanced” health GBAORD data and health-related patents (PCT), 2004 ... 201
4.5. Framework for analysing the effects of research on well-being 212
5.1. Firms having introduced a product or process innovation (as a % of all firms), 2002-04 (or closest available years). 226
5.2. Firms having introduced a marketing or organisational innovation (as a % of all firms), 2002-04 (or closest available years) 227
5.3. Share of turnover from product innovations (as a % of total turnover), 2002-04 (or closest available years) ... 228
5.4. Output-based modes, all firms, 2002-04 (or closest available years) 230
5.5. Output-based modes, all firms, employment weights, 2002-04 (or closest available years) ... 231
5.6. Output-based modes manufacturing and services, 2002-04 (or closest available years). ... 232
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7. Output-based modes manufacturing and services, 2002-04</td>
<td>232</td>
</tr>
<tr>
<td>(or closest available years)</td>
<td></td>
</tr>
<tr>
<td>5.8. Innovation status, all firms, 2002-04 (or closest available years)</td>
<td>233</td>
</tr>
<tr>
<td>5.9. Share of firms collaborating on innovation, 2002-04</td>
<td>234</td>
</tr>
<tr>
<td>(or closest available years)</td>
<td></td>
</tr>
<tr>
<td>5.10. Share of firms collaborating on innovation, 2002-04</td>
<td>235</td>
</tr>
<tr>
<td>(or closest available years)</td>
<td></td>
</tr>
<tr>
<td>5.11. Patent families per million population</td>
<td>248</td>
</tr>
<tr>
<td>5.12. Propensity to use IPR (patents and trademarks)</td>
<td>249</td>
</tr>
<tr>
<td>5.13. Propensity to use IPR (patents and trademarks)</td>
<td>249</td>
</tr>
<tr>
<td>5.14. Propensity to use IPR (patents and trademarks)</td>
<td>250</td>
</tr>
<tr>
<td>5.15. Propensity to use IPR (patents and trademarks)</td>
<td>250</td>
</tr>
<tr>
<td>5.16. Incentive effects of patents on firms’ total innovative effort</td>
<td>251</td>
</tr>
<tr>
<td>5.17. Incentive effects of patents on firms’ R&D effort</td>
<td>251</td>
</tr>
</tbody>
</table>